If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-2-6x=0
a = 7; b = -6; c = -2;
Δ = b2-4ac
Δ = -62-4·7·(-2)
Δ = 92
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{92}=\sqrt{4*23}=\sqrt{4}*\sqrt{23}=2\sqrt{23}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{23}}{2*7}=\frac{6-2\sqrt{23}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{23}}{2*7}=\frac{6+2\sqrt{23}}{14} $
| -1-3=-2(x-1)-4(2x-5) | | 322=7/10t | | 4000=800+5x | | 13=-7+5w | | x-6=70 | | 4(y/2)+5y=44 | | 3(x=5)=2(2-3)=4(-2x+1) | | 2u+4=2 | | (x+3)*(x+2)+x(x+3)=x(x+1) | | 6x-7=139 | | 11.3x-10.1x+7=13.24 | | 5y+8=64 | | -11+x/5=6 | | 24-5x6= | | f/15-13=-14 | | -3(8+n)=24 | | 5(x/9)=17+x | | m2+14m+94=-2 | | 2x+(x+5)=50 | | 5/7x-8=2/13x+5 | | m-3(m-5)=5 | | k/5+15=14 | | (2x+15)+(6x+2)=180 | | 1+x/4=7 | | (x+5)+2x=50 | | -2x+5x-9=3x(x-4)-5 | | 15+2x=49 | | 2(4u-6)=70 | | 4x-1=3x^2+4×-4 | | 8x+19=-15 | | 2x+(x-3)=180 | | -2+x/13=1 |